Differentiation and Numerical Integral of the Cubic Spline Interpolation
نویسندگان
چکیده
Based on analysis of cubic spline interpolation, the differentiation formulas of the cubic spline interpolation on the three boundary conditions are put up forward in this paper. At last, this calculation method is illustrated through an example. The numerical results show that the spline numerical differentiations are quite effective for estimating first and higher derivatives of equally and unequally spaced data. The formulas based on cubic spline interpolation solving numerical integral of discrete function are deduced. The degree of integral formula is n=3.The formulas has high accuracy. At last, these calculation methods are illustrated through examples.
منابع مشابه
Solving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets
In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...
متن کاملConvergence of Integro Quartic and Sextic B-Spline interpolation
In this paper, quadratic and sextic B-splines are used to construct an approximating function based on the integral values instead of the function values at the knots. This process due to the type of used B-splines (fourth order or sixth order), called integro quadratic or sextic spline interpolation. After introducing the integro quartic and sextic B-spline interpolation, their convergence is ...
متن کاملNumerical solution of functional integral equations by using B-splines
This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method can be extended to functional differential and integro-differential equations. For showing efficiency of the method we give some numerical examples.
متن کاملPiecewise cubic interpolation of fuzzy data based on B-spline basis functions
In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...
متن کاملNUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 6 شماره
صفحات -
تاریخ انتشار 2011